
Synchronous and Asynchronous 
and everything in between



preencoded.png

Decision Drivers
Quality Attributes That Shape API Design

Scalability & Throughput

System capacity to handle increasing load and concurrent operations without 

degradation

Latency & Notification Speed

Time delay between operation completion and client awareness of results

Reliability & Fault Tolerance

Guaranteed delivery and graceful handling of failures across distributed components

Security & Trust Boundaries

Authentication, authorisation, and protection across organisational boundaries

Maintainability & Observability

Ease of debugging, monitoring, and evolving the system over time

Client Simplicity

Implementation complexity and compatibility requirements for consuming applications

https://gamma.app/?utm_source=made-with-gamma


Synchronous or Asynchronous?

Synchronous

• Easy programming model

• Easier error handling

• More coupling

• Strict data consistency achievable

Asynchronous

• More levels of indirection allow for

decoupling

• Decoupling of uptime

• More robust in certain situations

• More difficult programming model

• Eventual consistency as only option



ASYNC DESIGN 
CHOICES

4



preencoded.png

Option A: Polling

How It Works

Server immediately returns HTTP 202 Accepted with a status URL. Client periodically queries this 

endpoint to check operation progress until completion.

Advantages

• Simple client implementation

• Firewall and proxy friendly

• Strong security boundaries

• No exposed client endpoints required

Trade-offs

• Additional server load from repeated requests

• Delayed result awareness

• "Thundering herd" risk at known intervals

• Inefficient for time-sensitive operations

Best suited for: Clients unable to expose public 

endpoints, such as mobile applications or services 

behind restrictive firewalls.

https://gamma.app/?utm_source=made-with-gamma


preencoded.png

Option B: Callback / Webhook

How It Works

Client provides a callback URL during request 

initiation. Server actively invokes this endpoint 

when the operation completes, pushing results 

directly to the client.

Advantages

• Minimal latency between completion and 

notification

• Server-efficient: no status endpoint needed

• Ideal for server-to-server integration

• Enables immediate downstream processing

Trade-offs

• Client must expose and secure public 

endpoint

• More complex authentication mechanisms

• Retry and delivery guarantee logic required

• Firewall and network topology constraints

Best suited for: Advanced clients with robust infrastructure, particularly internal services or trusted integration 

partners.

https://gamma.app/?utm_source=made-with-gamma


preencoded.png

Option C: Push / Event Stream

How It Works

Server publishes results to an event broker (Kafka, RabbitMQ) or maintains persistent connections (WebSocket, 

Server-Sent Events). Multiple subscribers receive updates in real-time.

Advantages

• True real-time notification delivery

• Highly scalable for many subscribers

• Natural fit for event-driven architectures

• Decouples producer and consumer lifecycles

Trade-offs

• Complex infrastructure requirements

• Persistent connection management overhead

• Event ordering and delivery semantics

• Operational expertise needed for brokers

Best suited for: Streaming scenarios, multi-client broadcasting, and systems already 

invested in event-driven infrastructure.

"Event streams excel when multiple downstream systems need immediate awareness of 

state changes."

https://gamma.app/?utm_source=made-with-gamma


What do you use ?

What challenges do you face ?

What decision drivers do you see ?


	Folie 1: Synchronous and Asynchronous and everything in between
	Folie 2
	Folie 3: Synchronous or Asynchronous?
	Folie 4: Async Design Choices
	Folie 5
	Folie 6
	Folie 7
	Folie 8

