JSON-FG
(OGC Features and Geometries JSON)

Developers today prefer JSON over XML

API Formats: Why JSON won over XML

By Erik Wilde - November 11,2020

® xml ® json @ SQLite . .
Search term Search term Search term : + Add comparison
Worldwide ¥ 01/01/2004 -31/12/2021 ¥ All categories ¥ Web Search v \ ‘

Interest over time

&

o <L

- Note
Average 1 Jan 2004 1Jan 2010 1Jan 2016

The vast majority of APIs today are using the JavaScript Object Notation (JSON) to represent the
structured data that they are exchanging. While JSON has been popular for a number of years now,
there still are APIs out there that use the Extensible Markup Language (XML) instead, and in some

communities, this still is a popular data format.

GeoJSON popular and widely supported,
OGC API Features implementations typically support GeoJSON

® Geography Marku... ® GeoJSON © GeoPackage .
- grapny 9 + Add comparison
ormat Format Format

Worldwide ¥ 01/01/2004 -31/12/2021 ¥ All categories ¥ Web Search ¥

|

o<

Interest over time

)
JL e AL AN Ngte

Average 1 Jan 2004 1Jan 2010 1Jan 2016

Motivation for JSON-FG

= |ntentional limitations exist in GeoJSON that are an issue for some use cases:
= Restricted to WGS 84 as Coordinate Reference System

Ellipsoidal metrics not supported

Points, line strings and polygons — no support for solids or prisms

Supports spatial, but not temporal geometries

No feature type concept, no information about the schema

Approach

Develop an OGC Features and Geometries JSON standard addressing the identified
limitations

= Avoid edge cases, focus on capabilities that are useful for many spatial experts

= Additional capabilities could be added in the future, if there is broad support for the initial
OGC Features and Geometries JSON in implementations

Specify as a superset of GeoJSON
= Thatis, valid GeoJSON is also valid OGC Features and Geometries JSON and vice versa

= Adding additional top-level members and links in the JSON objects (feature and feature
collection)

No dependency on JSON-LD
= But for those that want to use JSON-LD, avoid conflicts

It is not the idea to develop a GML-equivalent for JSON

GeoJSON is the starting point

= JSON
= {...}is an object with key/value pairs (members)
= [..]is an array
= GeoJSON
= A feature collection is an object; predefined keys:
= "type" — always "FeatureCollection”
= "features" — an array of features
= A feature is an object; predefined keys:
= "type" — always "Feature"
= "id" — an optional identifier
= "geometry" — a Simple Feature geometry

(Point, LineString, etc.) in WGS 84 longitude,
latitude and optional ellipsoidal height
= "properties" — an object that can contain

feature properties, GeoJSON does not place
any constraints on the contents

"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"id": "DENW19AL0000giv5BL",
"geometry": {
"type": "Point",
"coordinates": [8.7092045, 51.503528
}I
"properties": {
"address": "..."
"lastChange": "2014-04-24T10:50:182",

"built": "2012-03",

}y

]

Identifying the feature type(s) = token for

filtering
. {
= Features are often categorized by "eype: "Feature,
"id": "DENW19AL0000giv5BL",
type "featureType": "app:building",
= typically one feature type, but
multiple feature types are e
"href": "https://inspire.ec.europa.eu/
Supported, tOO featureconcept/Building",
"rel": "type",
= GIS CllentS Often depend on : "title": "This feature is of type 'building'"

knowledge about the feature type -

= example: to associate a style to semantic type definition in
some regqistry, if available
render the feature on a map

= GeoJSON has no concept of feature
types or feature schemas

Identifying the schema(s)

= Language: JSON Schema

= Clients can use schemas to validate the
JSON document or to derive additional
information about the content

= Follow the JSON Schema guidance:

= |tis RECOMMENDED that instances
described by a schema provide a link to
a downloadable JSON Schema using
the link relation "describedby”.

= Determine that an instance is a GeoJSON /
JSON-FG feature though the canonical URIs
of the schemas

.« ey

"links": [

{

"href": "https://ogc-api.nrw.de/lika/v1l/

collections/gebaeude bauwerk/schema",

"rel": "describedby",
"type": "application/schema+json",
"title": "JSON Schema of this document"

"href":"http://schemas.opengis.net/tbd/

Feature. json",

"rel":"describedby",
"type":"application/schema+json",
"title":"This document is a JSON-FG Feature"

"href":"https://geojson.org/schema/

Feature. json",

"rel":"describedby",
"type":"application/schema+json",
"title":"This document is a GeoJSON Feature"

links to all schemas that the
document conforms to

Encoding temporal information

= GeoJSON supports spatial geometries

"type": "Feature",
= Features are often associated with temporal i {
"time":
information, too "interval": ["2014-04-24T10:50:182", "..'
. b
= OGC API Features supports not only spatial, but also .
. . . "properties": {
temporal filtering (datetime parameter) S ehomoen: "2014-04-24710:50:182",
= JSON-FG adds support for the most common case "built": "2012-03",

= associating a feature with a single temporal instant }

or interval in the Gregorian calendar

top-level member "time"

= main use case is filtering (time slider) or display
without the need to understand the feature schema

= leveraging RFC 3339 and ISO 8601

= No constraints how this primary temporal geometry is
derived from the feature properties

Encoding a spatial geometry (1/3)

= GeoJSON supports Simple Features

"geometry": {

geometries (2D or 2.5D points, line typen: "Folygon’,
Strings, pOIygonS or aggregations Of [[8.709204563652449, 51.50352856284526, 100],
them) in WGS 84 [8.709204563652449, 51.50352856284526, 100]

]
]

= A geometry that meet these ;
constraints will always be in the b
"geometry" member from GeoJSON

10

top-level member "coordRefSys"

Encoding a spatial geometry (2/3) declares the CRStin the "place”
geometry

= Other geometries are added in a top-level {

" " '.'<.:c-><’>rdRefSys": "http://www.opengis.net/def/crs/
member "place EPSG/0/5555",
. . . "place": {
= Geometry is a solid or a prism (extruded Ttypet: "Polyhedron”,
"coordinates": [
polygon) [
= Support for arcs and circles under [

[479816.67, 5705861.672, 100 1,
discussion [479816.67, 5705861.672, 100]
]
= Geometry is in another CRS C

= the CRS is declared in "coordRefSys", o

also supports ad-hoc compound CRS) top-level member "place

and coordinate epochs for dynamic
CRSs

= We plan to support a local CRS
(cartesian coordinate system with an
unknown datum, often used in CAD/BIM)

11

Encoding a spatial geometry (3/3)

= To support GeoJSON readers a
fallback geometry can be added in
the GeoJSON "geometry" member

= Recommended default for APIs and
other JSON-FG generators is to not
include a fallback geometry

= A JSON-FG consumer does not
need this information

= Use a media type parameter
compatibility=geojson for
JSON-FG with fallback geometries

Accept: application/vnd.ogc.fg+json;compatibility=geojson,
application/vnd.ogc.fg+json; g=0.9, application/geo+json; g=0.8

{

"coordRefSys": "http://www.opengis.net/def/crs/EPSG/0/

5555",
"place": {
"type": "Polyhedron",
"coordinates": [

}l

]

[

[
[479816.67, 5705861.672, 100 1, ...
[479816.67, 5705861.672, 100]
]
:I r

"geometry": {
"type": "Polygon",
"coordinates": [

}l

]

[
[8.709204563652449, 51.50352856284526, 100],
[8.709204563652449, 51.50352856284526, 100

]

a valid GeoJSON geometry in
"geometry"

12

Declaring information in the feature collection

. . . . {
= To simplify processing by clients teypen: "FeatureCollection”,
= For homogenous feature collections, it is "featureType”: "app:bullding”,
L. . "geometryDimension": 2,
sufficient to include the feature type "coordRefSys": "http://www.opengis

. . . . EPSG/0/5555",
information once — in the feature collection

"features": [

= |f all features in the feature collection have
geometries of the same dimension, this can)
be declared, too

0: points

1: curves

]

2: surfaces
3: solids
no value: unknown or mixed

= Declare a default coordinate reference
system

.net/def/crs/

13

Relationships and links

Relationships with other features or other
resources like codelists

= Direct properties of the feature or in
embedded JSON objects

= Three patterns for encoding have been
identified and are described as guidance, but no
plans to specify any requirements
= Depending on the data and how the data is
expected to be used, the preferences of
data publishers for one or the other pattern
will vary

= Pattern 1: web link in the "links" array

= Pattern 2: like a regular feature property - with a
simplified link object

= Pattern 3: like a regular feature property - with a
URI value

.« ey

"links": [
{
"href" : "https://ogc-api.nrw.de/lika/v1l/
collections/flurstueck/items/
05297001600313 ",
"rel" : "http://www.opengis.net/def/rel/ogc/
1.0/within",
"title" : "Cadastral parcel 313 in district
Winnenberg (016)"
}
J ’
"properties": {

.
"owners": [
{
"href": "https://example.org/john-doe",
"title": "John Doe"

"href": "https://example.org/jane-doe",
"title": "Jane Doe"

14

Other topics under discussion

= Declare more Metadata in the feature collection?
= The zoom level / scale of the geometry (e.g., if the geometry has been
simplified)
= Information that/where geometry has been clipped
= The Level-of-Detail (LoD) of a feature
= Metadata to signal to clients/parsers how to process the JSON document
(e.g., the media types that the document conforms to)

= Experiments to verify that JSON-FG documents can be used with JSON-LD
contexts?

15

Looking for feedback

= Are these extensions useful for your use cases?

= Are they simple enough to implement?

More Information:

Draft specification: https://docs.ogc.org/DRAFTS/21-045.html
GitHub repository: https://github.com/opengeospatial/ogc-feat-geo-json

Project Board: https://github.com/opengeospatial/ogc-feat-geo-json/projects/1

Issues: https://qgithub.com/opengeospatial/ogc-feat-geo-json/issues

Implementations: https://github.com/opengeospatial/ogc-feat-geo-json/tree/main/implementations

Testbed 17 Engineering Report: hitp://docs.opengeospatial.org/per/21-017r1.html

16

https://docs.ogc.org/DRAFTS/21-045.html
https://github.com/opengeospatial/ogc-feat-geo-json
https://github.com/opengeospatial/ogc-feat-geo-json/projects/1
https://github.com/opengeospatial/ogc-feat-geo-json/issues
https://github.com/opengeospatial/ogc-feat-geo-json/tree/main/implementations
http://docs.opengeospatial.org/per/21-017r1.html

JSON-FG Status and Roadmap

= Past Milestones and Activities
= SWG kick-off: June 1%, 2021
= Initial proposals for the topics in the charter discussed and agreed
= Testing in OGC Testbed-17 and the November 2021 Code Sprint
= |nitial internal draft: January 7t", 2022
= Potential Future Milestones
= First complete draft v0.1: May 2022 ?
= This is a draft version that we want to keep stable, if possible, for months to support implementations
= Testing in OGC (e.g. September Code Sprint) and elsewhere
= Submission of v0.x for OAB Review followed by Public Review: End of 2022 ?
= Only if there is enough momentum, feedback and implementation support
= Release of v1.0: 2" half of 2023 ?

= Again, only if there is enough momentum, feedback and implementation support

Thank you for your attention!

