
JSON-FG
(OGC Features and Geometries JSON)

Developers today prefer JSON over XML

GeoJSON popular and widely supported,
OGC API Features implementations typically support GeoJSON

Motivation for JSON-FG

§ Intentional limitations exist in GeoJSON that are an issue for some use cases:
§ Restricted to WGS 84 as Coordinate Reference System
§ Ellipsoidal metrics not supported
§ Points, line strings and polygons – no support for solids or prisms
§ Supports spatial, but not temporal geometries
§ No feature type concept, no information about the schema

Approach

§ Develop an OGC Features and Geometries JSON standard addressing the identified
limitations
§ Avoid edge cases, focus on capabilities that are useful for many spatial experts
§ Additional capabilities could be added in the future, if there is broad support for the initial

OGC Features and Geometries JSON in implementations
§ Specify as a superset of GeoJSON

§ That is, valid GeoJSON is also valid OGC Features and Geometries JSON and vice versa
§ Adding additional top-level members and links in the JSON objects (feature and feature

collection)
§ No dependency on JSON-LD

§ But for those that want to use JSON-LD, avoid conflicts
§ It is not the idea to develop a GML-equivalent for JSON

GeoJSON is the starting point

§ JSON
§ { ... } is an object with key/value pairs (members)
§ [...] is an array

§ GeoJSON
§ A feature collection is an object; predefined keys:

§ "type" – always "FeatureCollection"
§ "features" – an array of features

§ A feature is an object; predefined keys:
§ "type" – always "Feature"
§ "id" – an optional identifier
§ "geometry" – a Simple Feature geometry

(Point, LineString, etc.) in WGS 84 longitude,
latitude and optional ellipsoidal height

§ "properties" – an object that can contain
feature properties, GeoJSON does not place
any constraints on the contents

{
"type": "FeatureCollection",
"features": [

{
"type": "Feature",
"id": "DENW19AL0000giv5BL",
"geometry": {

"type": "Point",
"coordinates": [8.7092045, 51.503528]

},
"properties": {

"address": "..."
"lastChange": "2014-04-24T10:50:18Z",
"built": "2012-03",
...

}
},
...

]
}

6

Identifying the feature type(s)

§ Features are often categorized by
type
§ typically one feature type, but

multiple feature types are
supported, too

§ GIS clients often depend on
knowledge about the feature type
§ example: to associate a style to

render the feature on a map
§ GeoJSON has no concept of feature

types or feature schemas

{
"type": "Feature",
"id": "DENW19AL0000giv5BL",
"featureType": "app:building",

...

"links": [
{

"href": "https://inspire.ec.europa.eu/
featureconcept/Building",

"rel": "type",
"title": "This feature is of type 'building'"

}
],
...

}

7

a token for
filtering

in addition, a link to the
semantic type definition in
some registry, if available

Identifying the schema(s)

§ Language: JSON Schema
§ Clients can use schemas to validate the

JSON document or to derive additional
information about the content

§ Follow the JSON Schema guidance:
§ It is RECOMMENDED that instances

described by a schema provide a link to
a downloadable JSON Schema using
the link relation "describedby".

§ Determine that an instance is a GeoJSON /
JSON-FG feature though the canonical URIs
of the schemas

{
...,
"links": [

{
"href": "https://ogc-api.nrw.de/lika/v1/

collections/gebaeude_bauwerk/schema",
"rel": "describedby",
"type": "application/schema+json",
"title": "JSON Schema of this document"

},
{

"href":"http://schemas.opengis.net/tbd/
Feature.json",

"rel":"describedby",
"type":"application/schema+json",
"title":"This document is a JSON-FG Feature"

},
{

"href":"https://geojson.org/schema/
Feature.json",

"rel":"describedby",
"type":"application/schema+json",
"title":"This document is a GeoJSON Feature"

}
],
...

}

8

links to all schemas that the
document conforms to

Encoding temporal information

§ GeoJSON supports spatial geometries
§ Features are often associated with temporal

information, too

§ OGC API Features supports not only spatial, but also
temporal filtering (datetime parameter)

§ JSON-FG adds support for the most common case
§ associating a feature with a single temporal instant

or interval in the Gregorian calendar

§ main use case is filtering (time slider) or display
without the need to understand the feature schema

§ leveraging RFC 3339 and ISO 8601
§ No constraints how this primary temporal geometry is

derived from the feature properties

{
"type": "Feature",
...,
"time": {

"interval": ["2014-04-24T10:50:18Z", ".."]
},
...,
"properties": {

"lastChange": "2014-04-24T10:50:18Z",
"built": "2012-03",
...

}
}

9

top-level member "time"

Encoding a spatial geometry (1/3)

§ GeoJSON supports Simple Features
geometries (2D or 2.5D points, line
strings, polygons or aggregations of
them) in WGS 84

§ A geometry that meet these
constraints will always be in the
"geometry" member from GeoJSON

{
...,
"geometry": {

"type": "Polygon",
"coordinates": [

[
[8.709204563652449, 51.50352856284526, 100],

...
[8.709204563652449, 51.50352856284526, 100]

]
]

},
...

}

10

Encoding a spatial geometry (2/3)

§ Other geometries are added in a top-level
member "place"
§ Geometry is a solid or a prism (extruded

polygon)
§ Support for arcs and circles under

discussion
§ Geometry is in another CRS
§ the CRS is declared in "coordRefSys",

also supports ad-hoc compound CRS
and coordinate epochs for dynamic
CRSs

§ We plan to support a local CRS
(cartesian coordinate system with an
unknown datum, often used in CAD/BIM)

{
...,
"coordRefSys": "http://www.opengis.net/def/crs/

EPSG/0/5555",
"place": {

"type": "Polyhedron",
"coordinates": [

[
[

[479816.67, 5705861.672, 100], ...
[479816.67, 5705861.672, 100]

]
], ...

]
},
...

}

11

top-level member "place"

top-level member "coordRefSys"
declares the CRS in the "place"

geometry

Encoding a spatial geometry (3/3)

§ To support GeoJSON readers a
fallback geometry can be added in
the GeoJSON "geometry" member

§ Recommended default for APIs and
other JSON-FG generators is to not
include a fallback geometry

§ A JSON-FG consumer does not
need this information

§ Use a media type parameter
compatibility=geojson for
JSON-FG with fallback geometries

Accept: application/vnd.ogc.fg+json;compatibility=geojson,
application/vnd.ogc.fg+json; q=0.9, application/geo+json; q=0.8

{
...,
"coordRefSys": "http://www.opengis.net/def/crs/EPSG/0/

5555",
"place": {

"type": "Polyhedron",
"coordinates": [

[
[

[479816.67, 5705861.672, 100], ...
[479816.67, 5705861.672, 100]

]
], ...

]
},
"geometry": {

"type": "Polygon",
"coordinates": [

[
[8.709204563652449, 51.50352856284526, 100], ...
[8.709204563652449, 51.50352856284526, 100]

]
]

},
...

}

12

a valid GeoJSON geometry in
"geometry"

Declaring information in the feature collection

§ To simplify processing by clients
§ For homogenous feature collections, it is

sufficient to include the feature type
information once – in the feature collection

§ If all features in the feature collection have
geometries of the same dimension, this can
be declared, too
§ 0: points
§ 1: curves
§ 2: surfaces
§ 3: solids
§ no value: unknown or mixed

§ Declare a default coordinate reference
system

{
"type": "FeatureCollection",
"featureType": "app:building",
"geometryDimension": 2,
"coordRefSys": "http://www.opengis.net/def/crs/

EPSG/0/5555",
"features": [

...
]

}

13

Relationships and links

§ Relationships with other features or other
resources like codelists
§ Direct properties of the feature or in

embedded JSON objects
§ Three patterns for encoding have been

identified and are described as guidance, but no
plans to specify any requirements
§ Depending on the data and how the data is

expected to be used, the preferences of
data publishers for one or the other pattern
will vary

§ Pattern 1: web link in the "links" array
§ Pattern 2: like a regular feature property - with a

simplified link object
§ Pattern 3: like a regular feature property - with a

URI value

{
...,
"links": [

{
"href" : "https://ogc-api.nrw.de/lika/v1/

collections/flurstueck/items/
05297001600313______",

"rel" : "http://www.opengis.net/def/rel/ogc/
1.0/within",

"title" : "Cadastral parcel 313 in district
Wünnenberg (016)"

}
],
"properties": {

...,
"owners": [

{
"href": "https://example.org/john-doe",
"title": "John Doe"

},
{

"href": "https://example.org/jane-doe",
"title": "Jane Doe"

}
]

}
}

14

Other topics under discussion

§ Declare more Metadata in the feature collection?
§ The zoom level / scale of the geometry (e.g., if the geometry has been

simplified)

§ Information that/where geometry has been clipped
§ The Level-of-Detail (LoD) of a feature
§ Metadata to signal to clients/parsers how to process the JSON document

(e.g., the media types that the document conforms to)
§ Experiments to verify that JSON-FG documents can be used with JSON-LD

contexts?

15

Looking for feedback

§ Are these extensions useful for your use cases?

§ Are they simple enough to implement?

More Information:
§ Draft specification: https://docs.ogc.org/DRAFTS/21-045.html

§ GitHub repository: https://github.com/opengeospatial/ogc-feat-geo-json
§ Project Board: https://github.com/opengeospatial/ogc-feat-geo-json/projects/1

§ Issues: https://github.com/opengeospatial/ogc-feat-geo-json/issues
§ Implementations: https://github.com/opengeospatial/ogc-feat-geo-json/tree/main/implementations

§ Testbed 17 Engineering Report: http://docs.opengeospatial.org/per/21-017r1.html

16

https://docs.ogc.org/DRAFTS/21-045.html
https://github.com/opengeospatial/ogc-feat-geo-json
https://github.com/opengeospatial/ogc-feat-geo-json/projects/1
https://github.com/opengeospatial/ogc-feat-geo-json/issues
https://github.com/opengeospatial/ogc-feat-geo-json/tree/main/implementations
http://docs.opengeospatial.org/per/21-017r1.html

JSON-FG Status and Roadmap
§ Past Milestones and Activities

§ SWG kick-off: June 1st, 2021
§ Initial proposals for the topics in the charter discussed and agreed
§ Testing in OGC Testbed-17 and the November 2021 Code Sprint

§ Initial internal draft: January 7th, 2022
§ Potential Future Milestones

§ First complete draft v0.1: May 2022 ?
§ This is a draft version that we want to keep stable, if possible, for months to support implementations

§ Testing in OGC (e.g. September Code Sprint) and elsewhere
§ Submission of v0.x for OAB Review followed by Public Review: End of 2022 ?

§ Only if there is enough momentum, feedback and implementation support
§ Release of v1.0: 2nd half of 2023 ?

§ Again, only if there is enough momentum, feedback and implementation support

Thank you for your attention!

